The Real Regulator for a Product of K3 Surfaces

نویسندگان

  • Xi Chen
  • James D. Lewis
  • JAMES D. LEWIS
چکیده

Let X be a general complex algebraic K3 surface, and CH2(X, 1) Bloch’s higher Chow group ([Blo1]). In [C-L2] it is proven that the real regulator r2,1 : CH 2(X, 1)⊗ R→ H1,1(X,R) is surjective (Hodge-D-conjecture). The question addressed in this paper is whether a similar story holds for products of K3 surfaces. We prove a general regulator result for a product of two surfaces, and then deduce, under the assumptions of [a variant of] the Bloch-Beilinson conjecture regarding the injectivity of the Abel-Jacobi map for smooth quasiprojective varieties defined over number fields, that the (induced) regulator map r3,1 : CH 3(X×Y, 1)→ { H2 tr(X,R)⊗H tr(Y,R) } ∩H2,2(X×Y ) is trivial for a general pair of K3 surfaces, where H2 tr(X,R) is the space of transcendental classes in H2(X,R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Real Regulator for a Self-product of a General Surface

In [C-L3] it is shown that the real regulator for a general self-product of a K3 surface is nontrivial. In this note, we prove a theorem which says that the real regulator for a general self-product of a surface of higher order (in a suitable sense), is essentially trivial. 1. Statement of the theorem Let Γ be a smooth projective curve, {Zt}t∈Γ a family of surfaces, all defined over a subfield ...

متن کامل

Normal Functions, Picard-fuchs Equations, and Elliptic Fibrations on K3 Surfaces

Using Gauss-Manin derivatives of generalized normal functions, we arrive at results on the non-triviality of the transcendental regulator for Km of a very general projective algebraic manifold. Our strongest results are for the transcendental regulator for K1 of a very general K3 surface and its self-product. We also construct an explicit family of K1 cycles on H ⊕ E8 ⊕ E8-polarized K3 surfaces...

متن کامل

m at h . A G ] 1 6 Ju n 20 08 REAL REGULATORS ON SELF - PRODUCTS OF K 3 SURFACES

Based on a novel application of an archimedean type pairing to the geometry and deformation theory of K3 surfaces, we construct a regulator indecomposable K1-class on a self-product of a K3 surface. In the Appendix, we explain how this pairing is a special instance of a general pairing on precycles in the equivalence relation defining Bloch’s higher Chow groups.

متن کامل

K ind 1 of elliptically fibered K3 surfaces: a tale of two cycles

We discuss two approaches to the computation of transcendental invariants of indecomposable algebraic K1 classes. Both the construction of the classes and the evaluation of the regulator map are based on the elliptic fibration structure on the family of K3 surfaces. The first computation involves a Tauberian lemma, while the second produces a “Maass form with two poles”. MSC 2000: 14C25, 14C30,...

متن کامل

Remarks on Connected Components of Moduli of Real Polarized K3 Surfaces

We have finalized the old (1979) results from [11] about enumeration of connected components of moduli or real polarized K3 surfaces. As an application, using recent results of [13] (see also math.AG/0312396), we completely classify real polarized K3 surfaces which are deformations of real hyper-elliptically polarized K3 surfaces. This could be important in some questions, because real hyper-el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012